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Decay of coupled plasmon–phonon modes in heavily doped
semiconductors
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School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, UK

Received 10 February 1997

Abstract. For comparison with results obtained in recent phonon pulse experiments, we have
calculated the relative magnitudes of different decay mechanisms for coupled plasmon–phonon
modes in heavily doped GaAs. We find the dominant mechanism for energy loss by the coupled
modes to be the direct excitation of bare phonons through second-order dipole moment and
third-order anharmonic interactions, resulting in a lifetime of less than 1 ps for the particular
material used in the experiments. Other mechanisms, notably lattice viscosity, electron–hole pair
creation, rigorously forbidden at absolute zero, and the excitation of two electron–hole pairs, a
higher-order effect but allowed at zero temperature, all give significantly smaller contributions
to the decay rate. However, collision damping of the electrons through impurity scattering gives
a lifetime which is much shorter than the above value, around 0.1 ps, but we note that this is an
elastic scattering time, in contrast with the inelastic energy loss process. Linewidths in Raman
scattering experiments yield the total scattering rate, which is dominated by the elastic process;
currently only the phonon pulse measurements can give information directly on the inelastic
process.

1. Introduction

It is well known that, in doped semiconductors in which the plasma frequency is close to
the frequencies of polar optical phonons, neither plasmons (as long-wavelength elementary
excitations of the ideal Fermi gas) nor polar optical phonons (as ideal lattice eigenstates)
are elementary excitations of a crystal as a whole. In this situation, the strong interaction
between them gives rise to the formation of coupled plasmon–phonon modes. These modes
were first observed by Mooradian and Wright [1] in heavily doped GaAs using Raman
scattering and have since been studied extensively [2–4]. Indeed, measurements of Raman
spectra in heavily doped semiconductors and microstructures, especially those of reduced
dimensionality, are often part of routine material characterization. The frequencies of the
coupled modes, measured from the Stokes shift of the scattered light, give directly the carrier
concentration, whilst the mobility of the carriers can be obtained from the line broadening.

Recently a new technique for studying coupled modes was demonstrated in which
the acoustic phonons resulting from the decay of the modes were detected directly by
superconducting bolometers [5]. In these experiments the coupled modes were excited
by electrons tunnelling through a GaAs/Al xGa1−xAs double-barrier resonant tunnelling
structure (DBRTS) into a heavily doped collector layer. The experiments confirmed for
the first time that coupled-mode emission is the dominant mechanism for energy loss in
such structures. Furthermore, the results also showed that the coupled modes themselves
decayed by the emission of pure phonons, and not through electronic excitations. This was
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a surprising result since the data from Raman experiments imply that collision damping
of the electron gas is the major source of line broadening. However, there have been no
other experiments carried out directly on energy loss from coupled modes, nor any previous
theoretical treatment of their decay. In this paper we consider all the possible mechanisms
for the decay process and obtain numerical estimates for the samples used in [5]. We confirm
that direct excitation of lattice vibrations is indeed the fastest inelastic process. However,
we also find that this is an order of magnitude slower than (elastic) collision damping, which
leads us therefore to the interesting question of the relation between energy dissipation and
momentum redistribution of the plasmon collective mode of the Fermi gas. Specifically, is
the overall phase coherence of the collective motion which forms the plasmon destroyed on
the time scale of the elastic or the inelastic scattering processes?

We shall return to this important question after first developing the theory of the coupled
mode scattering and decay processes, and comparing the numbers with experiment.

2. Interaction Hamiltonian

In this paper we follow the procedure of Hamiltonian diagonalization used by Peschke [6]
and describe the bare plasmons by field operators after the model of Bohm and Pines.
Then we add to the resulting Hamiltonian the phonon contribution and a term describing
the interaction between bare plasmons and bare phonons. It is standard procedure also to
keep the terms describing interactions between the electrons and plasmons, and between
electrons and phonons. However, for our purposes it is sufficient to keep only the part of
the Hamiltonian containing plasmon and phonon field operators. The resulting expression

H =
∑
|q|<qc

[
h̄�pl(a

+
q aq + 1

2)− i

√
h̄2�pl�LO

4

ε0− ε∞
ε0

(a+q bq − aqb+q + aqb−q − a+−qb+q )
]

+
∑
q

h̄�LO(b
+
q bq + 1

2) (1)

describes the coupling between plasmon and phonon modes and will be taken as our
unperturbed Hamiltonian. In (1),�pl is the plasma frequency and�LO the longitudinal
polar optical frequency,aq andbq are the annihilation operators for bare plasmons and bare
phonons, respectively,qc is the cut-off wavevector of the plasmons, andε0 andε∞ are the
static and optical dielectric constants, respectively, of the crystal.

To describe the mechanism of coupled-mode decay into lattice vibrational modes, we
must add to this Hamiltonian the next-order terms in elastic displacements which describe
the mode interactions. One mechanism for such an interaction is the anharmonic interaction
which affects the elastic component of the coupled mode and eventually causes its decay.
A second mechanism is that which couples crystal polarizability to lattice displacement.
This type of interaction is governed by second-order elastic contributions to the crystal
polarization [7]. Therefore we add to the interaction Hamiltonian terms describing the mode
interactions via the third-order anharmonic potentials and second-order dipole moment.

We derive the required interaction Hamiltonian from the general form

Hpl−ph = 1

4π

∫
drD′ ·Eph (2)

whereD′ is that part of electric displacement vector connected with plasma oscillations,
given by

D′ = ε∞Epl = i
√

2πε∞h̄�pl
∑
|q|<qc

q

q
Aq exp(iq · r) (3)
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andEph = −4πP , whereP is the polarization vector, andAq ≡ aq+a+−q. The linear terms
in the lattice polarizationP , when substituted into (1), result in coupling between plasmons
and phonons. To account for the interaction between the coupled modes and vibrational
excitations we keep the second-order terms in lattice polarization. In second quantization
notation these terms result in the following interaction energy:

H
(2)
pl−ph =

ih̄

4M

√
2πε∞h̄�pl
Na3

0

∑
q′,j ′;j ′′
|q|<qc

µ(2)(q; q′, j ′; −q − q′, j ′′)√
ωq′j ′ω−q−q′j ′′

AqBq′j ′B−q−q′j ′′ . (4)

HereBq ≡ bq−b+−q, a3
0 is the volume of the unit cell andM its mass,N is the number of cells

in a crystal, andωqj are the phonon frequencies for a phonon of branchj with wavevector
q. Also µ(2)(q; q′, j ′; −q−q′, j ′′) = µ(2)α,βγ (q; q′, j ′; −q−q′, j ′′)(qα/q)eβ(q′, j ′)eγ (−q−
q′, j ′′) is the effective value for the second-order dipole moment, andeβ(q, j) the phonon
unit polarization vector.

To account for phonon–phonon interactions we take the second-order dipole moment
and third-order anharmonic terms [8–10]. Thus

Hph−ph = − h̄

4M

√
2πh̄�LO
Na3

0

(
1

ε∞
− 1

ε0

)

×
∑

q;q′,j ′;j ′′

µ(2)(q; q′, j ′; −q − q′, j ′′)√
ωq′,j ′ω−q−q′,j ′′

BqBq′,j ′B−q−q′,j ′′ + 1

6
√
N

(
h̄

2M

)3/2

×
∑

q′,j ′;q′′,j ′′;j ′′′

8(3)(q′, j ′; q′′, j ′′; −q′ − q′′, j ′′′)√
ωq′,j ′ωq′′,j ′′ω−q′−q′′,j ′′′

×Bq′,j ′Bq′′,j ′′B−q′−q′′,j ′′′ . (5)

Here8(3)(q′, j ′; q′′, j ′′; −q′ − q′′, j ′′′) ≡ 8
(3)
αβγ (q

′, j ′; q′′, j ′′; −q′ − q′′, j ′′′)eα(q′, j ′)
×eβ(q′′, j ′′)eγ (−q′−q′′, j ′′′). In the coupled-mode representation the unperturbed plasmon–
phonon Hamiltonian is diagonal. The interaction Hamiltonians (4) and (5) are derived using
linear transformation of field operators:

aq
a+−q
bq
b+−q

 =

s1 t1 u1 v1

u∗1 v∗1 s∗1 t∗1
s2 t2 u2 v2

u∗2 v∗2 s∗2 t∗2



α1,q

α2,q

α+1,−q
α+2,−q

 . (6)

The elements of the transformation matrix (6) are the coordinates of the eigenvectors
for the equation [αq, H ] = Eαq [6]. They describe the relative contributions of plasma
oscillations and lattice displacement to each coupled mode. The quantitiesα1,q and α2,q

are the annihilation field operators for the coupled modes which we label by indices 1 and
2 for the upper (plasmon-like) and lower (phonon-like) coupled modes, respectively; thus
�1 > �2, where�1,2 are the coupled-mode frequencies.

Labelling the decaying mode byq and after the above transformation keeping only those
terms in the interaction Hamiltonian which describe the annihilation of an initial plasmon-
like or phonon-like excitation atq, and the creation of two phonons atq′, j ′ andq−q′, j ′′,
we obtain with the use of (6):

Hint1(2) =
∑
q′,j ′;j ′′

g1(2)(q;−q′, j ′; −q + q′, j ′′)α1(2),qb
+
q′,j ′b

+
q−q′,j ′′ (7)
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where

g1(2)(q;−q′, j ′; −q + q′, j ′′) = 1√
ωq′j ′ωq−q′,j ′′

(iβ1(2)Cpl + γ1(2)Cph)j ′,j ′′ (8)

with β1 ≡ s1+ u∗1, β2 ≡ t1+ v∗1, γ1 ≡ s2− u∗2, γ2 ≡ t2− v∗2,

(Cpl)j ′,j ′′ ≡ h̄

4M

√
2πε∞h̄�pl
Na3

0

µ
(2)
j ′,j ′′ ,

(Cph)j ′,j ′′ ≡ 1

6
√
N�LO

(
h̄

2M

)3/2

8̃
(3)
l,j ′,j ′′ .

(9)

The subscripts refer to upper and lower modes, respectively. In (9) we dropped the
wavevector dependence of the second-order dipole moment and cubic anharmonicity. In
(9) also,8̃(3) stands for the renormalized cubic anharmonicity arising from the contribution
of the second-order dipole moment to three-phonon interactions. It can be seen from (7)
that the second-order dipole moment contribution to the phonon–phonon interaction has
the same form as the cubic anharmonic interaction. The modified potential for the cubic
anharmonic interaction is

8̃
(3)
l,j ′,j ′′ = 8(3)

l,j ′,j ′′ − 3

√
4πM�2

LO

a3
0

(
1

ε∞
− 1

ε0

)
µ
(2)
j ′,j ′′ (10)

showing the relative strength of second-order dipole moment interactions relative to true
cubic anharmonicity. According to [9, 10],µ(2) > 0, while 8̃(3) < 0. Note that the final
states are bare phonons. This follows immediately from energy and momentum conservation
laws, which result in the strong inequalityq ′, |q−q′| � qc > q. Hence the decay products
have such large wavevectors that the electron–phonon interaction is well beyond the cut-off
and therefore does not modify the phonon properties in this part of Brillouin zone.

3. Coupled-mode decay rates

From (7)–(10) we can obtain the following expressions for the rates of spontaneous decay
of the coupled modes into bare phonons:

01 = 2π

h̄2

∑
q′,j ′,j ′′

|(iβ1Cpl + γ1Cph)j ′,j ′′ |2
ωq′,j ′(�1,q − ωq′,j ′) δ(�1,q − ωq′,j ′ − ωq−q′,j ′′) (11a)

and

02 = 2π

h̄2

∑
q′,j ′,j ′′

|(iβ2Cpl + γ2Cph)j ′,j ′′ |2
ωq′,j ′(�2,q − ωq′,j ′) δ(�2,q − ωq′,j ′ − ωq−q′,j ′′). (11b)

It is seen from (11a) and (11b) that the coupled modes decay into phonons because of
the coupling of the latter with both plasmon and phonon components, via the second-order
dipole moment and third-order anharmonic potential, respectively. Thus, if for some reason
the second-order dipole moment interaction is absent, then the upper mode can still decay
via the crystal anharmonicity. The effective coupling constant for this process is weaker;
the coefficientCpl → 0 and the weighting factor in (11a) take the form|s2− u∗2|2C2

ph,
reflecting the contribution of anharmonicity to the plasmon-like decay rate. The physical
meaning of this result is that the lattice viscosity relating to the phonon component of the
coupled mode eventually kills the whole mode. The strength of this interaction can be
related via the weighting factor to the amount of energy in the lattice component of the
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coupled mode. Another situation is that in which the modes are weakly coupled so that
the upper mode has only a small admixture of lattice distortion. Then|s1| → 1, |t1| → 0,
and |u1| → 0, |v1| → 0, so that the decay of the upper mode is almost exclusively via
the second-order dipole moment interaction with the coupling constantC2

pl . Similarly, the
decay of the lower mode is due almost totally to phonon–phonon interactions, although the
coupling constantC2

ph has been renormalized, as shown in equation (9), to include the effects
of the second-order dipole moment interaction on the effective three-phonon anharmonic
interaction and on the phonon dispersion curve arising from the effects of screening. Thus
|t2| 6= 0, |v2| 6= 0, |v2|/|t2| = (�LO −�TO)/(�LO +�TO) and |s2| → 0, |u2| → 0.

Whilst discussing the interaction of coupled modes with phonons we have completely
ignored the effects of screening on the effective coupling constants. To justify this
procedure, we need to compare the screened Fröhlich scattering strength,F ss (�) with the
unscreened Fröhlich scattering strengthFus . For smallq � qc this ratio isF ss (�1(2))/F

u
s =

[ε0/(ε0− ε∞)](�1(2)/�LO)[(�2
1(2)−�2

TO)/(�
2
1(2)−�2

2(1))], where�TO is the frequency of
the transverse optical phonon [11]. For the lower coupled mode which is most affected by
screening, this ratio in GaAs with ¯h�1 = 50 meV and ¯h�2 = 30 meV isF ss (�2)/F

u
s ≈ 0.63.

Therefore, even for the material with the strongest mode coupling (i.e. when�1 and�2 are
at their closest), screening is not expected to cause significant modification to our estimates
of the coupled-mode decay rates.

The general requirement for the vibrational decay of a coupled mode into two phonons to
be allowed can be seen from (11) to be�1 < 2�max , where�max is the maximum frequency
across the whole phonon spectrum. If this condition is fulfilled, then the decay products are
a pair of phonons with large and nearly opposite momenta to provide the conservation of
a very small initial plasmon wavevectorq < qc � π/a0. Thus a simple geometrical idea
allows us to identify the possible decay channels. We must find, by inspection of the phonon
dispersion curves, those values of the magnitude of the phonon wavevector for which the
sum of the energies of a pair of corresponding phonons having opposite directions is equal
to the energy of the initial coupled mode. We shall use this approach below to estimate the
decay times for the 50 and 30 meV coupled modes in doped GaAs observed in [5].

4. Coupled-mode decay into two phonons in heavily doped GaAs

The maximum energy in the phonon spectrum of GaAs is 36.4 meV, corresponding to the
LO phonon in the centre of the Brillouin zone. Therefore the two-phonon decay channel
is allowed provided that the initial mode energy is below 72.8 meV. The corresponding
electron density isn∗ = 2.7× 1018 cm−3. Above this threshold, the two-phonon decay
process is strictly prohibited. Having in mind the comparison with experiment [5], we
performed a numerical evaluation of the decay rate for the particular case of plasmon-like
mode energy ¯h�1 = 50 meV. There are in general five possible two-phonon decay channels
allowed by the conservation laws.

Channel 1: Pl→ LO+ LA.
Channel 2: Pl→ TO+ LA.
Channel 3: Pl→ LO+ FT.
Channel 4: Pl→ TO+ FT.
Channel 5: Pl→ LA + LA.

Here Pl refer to the upper coupled mode, LO to longitudinal optical phonons, and LA and
FT to longitudinal acoustic and fast transverse acoustic phonons, respectively. Channels 3
and 4 involve phonons near the K point of the Brillouin zone; we assume these channels
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to be allowed either at lower coupled mode energies, or through uncertainty in the mode
energy due to its short lifetime.

The expression for the decay rate (equation (11a)) can be rewritten in a form showing
the contribution of each channel:

01 = 2π

h̄2

∑
j ′,j ′′
|(iβ1Cpl + γ1Cph)j ′,j ′′ |2Sj ′,j ′′ (12)

where

Sj ′,j ′′ =
∑
q′

δ(�1,q − ωq′,j ′ − ωq−q′,j ′′)
ωq′,j ′(�1,q − ωq′,j ′) (13)

is the weighted two-phonon density of states for thenth decay channel. Assuming that
dispersion curves for optical phonons in GaAs are horizontal lines across the whole Brillouin
zone, it is straightforward to calculate weighted two-phonon density of states for all the decay
channels. As a result, equation (12) acquires the following form:

01 = 2

πh̄2v3
l

[
|(iβ1Cpl + γ1Cph)l,l|2

(
�1

�LO
− 1

)
+ 2|(iβ1Cpl + γ1Cph)l,t |2

(
�1

�TO
− 1

)
+|(iβ1Cpl + γ1Cph)l,t |2 �2

ν

�LO(�1−�LO)
ρFTmax

ρLA(�ν)

+2|(iβ1Cpl + γ1Cph)t,t |2 �2
ν

�TO(�1−�TO)
ρFTmax

ρLA(�ν)

+2|(iβ1Cpl + γ1Cph)l,l|2�
2
ν

�2
1

ρLA(�1/2)

ρLA(�ν)

]
. (14)

Here for simplification we introduce�ν = 2πν, where ν = 5 THz is the frequency
below which we may calculate phonon densities of states assuming a linear dispersion
relation for longitudinal phonons. We use this quantity as a reference for phonon densities
of states and take the ratiosρFTmax/ρLA(�ν) and ρLA(�1/2)/ρLA(�ν) from the results of
known calculations (see, e.g., [12]). To carry out the numerical evaluation we now need to
know Cpl, Cph, β1 and γ1. The first quantity we calculate using the following values:
µt,t = 0.177; µl,t = 0.370; µl,l = 0.605 [9, 10]. From (9) we may then estimate

Cph/Cpl = 1
6(8̃

(3)
l,j ′,j ′′/µ

(2)
j ′,j ′′)

√
a3

0/πε∞M�LO�pl . Taking |8̃(3)
l,j ′,j ′′ | ≈ 2× 1013 erg cm−3

(according to [9, 10]8̃(3)
t,t,t = −1.2× 1013 erg cm−3) andµ(2) ≈ 0.2 esu cm−1 we come to

the conclusion that|Cph/Cpl| ≈ 0.06� 1. Therefore, even if the upper mode contains a
significant lattice component, it is still true that|β1| ≈ |γ1| and|γ1Cph|/|β1Cpl| � 1 so that
to the accuracy of these estimates we may reasonably ignore the contribution of anharmonic
effects to the decay of the plasmon-like mode.

Solving the eigenvalue problem [αq, H ] = Eαq we find the following expressions:

s1 = 1

2

(�pl −�LO)(�pl +�1)

�2
1−�2

2

u1 = �pl

�1

(�1−�pl)(�1−�LO)
�2

1−�2
2

s2 = − i

2

√
ε0

ε0− ε∞
�pl

�1

�2
1−�2

LO

�2
1−�2

2

�2
LO −�2

2

�LO
√
�LO�pl

u2 = i

2

√
ε0

ε0− ε∞
�pl

�1

(�1−�LO)2
�2

1−�2
2

�2
LO −�2

2

�LO
√
�LO�pl

.

(15)
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If we take the values ¯h�1 = 52 meV and ¯h�2 = 31 meV (n = 1.25× 1018 cm−3), then
s1 ≈ 0.35, u1 ≈ 0.03, s2 ≈ −0.22i andu2 ≈ 0.04i. Therefore, for the numerical evaluation
we useβ1 = 0.38 andγ1 = −0.26i. Note thatCph is negative so that the plasmon-like
iβ1Cpl and the phonon-likeγ1Cph contributions to the coupling constant have the same sign,
causing enhancement of the total coupling constant. Thus, if we neglect the anharmonic
contribution, we shall obtain a lower limit for the decay rate. The ratio|γ1|/|β1| ≈ 0.7,
making the error due to disregarding the anharmonic contribution even less. Finally from
(14) we arrive at the following numerical estimates for the two-phonon plasmon-like mode
decay rate and lifetime, respectively:01 > 1.1× 1012 s−1 and τ 6 0.9 ps. It should be
noted that the decay is the result of a highly non-equilibrium situation. Hence the reverse
process is insignificant, since the thermal population of the product phonons which might
combine to create a coupled mode is negligibly small at low temperatures.

5. Other channels of coupled-mode decay

In this section we consider briefly other potential mechanisms for the decay of the plasmon-
like mode. As summarized earlier, the main channels are as follows:

(i) lattice viscosity contributing to dielectric losses;
(ii) single-particle emission (Landau damping) which is strictly forbidden at zero

temperature but is allowed in the exponential tail of the Fermi distribution at finite
temperatures;

(iii) emission of two electron–hole pairs (here the term hole means a vacancy below
Fermi level).

In addition, we estimate the following:

(iv) the magnitude of collisional damping in this system.

(i) The effect of lattice viscosity may be described phenomenologically by the following
contribution to the imaginary part of the total dielectric function [4]:

ε′′L = ε∞
�2
LO −�2

TO

(�2
TO −�2)2

�γL (16)

where, for GaAs,γL = 0.248 meV. Thus,ε′′L(�1) = 0.016 andτL ≈ 15 ps. Note that
this effect is totally different from the anharmonic damping of the lattice component of the
coupled mode discussed above.

(ii) We estimate the magnitude of creation of single electron–hole pairs using the
Lindhard dielectric function (f (Ek) is the Fermi–Dirac distribution function):

ε′′(q, ω) = −4πe2

q2
Im

(∑
k

f (Ek+q)− f (Ek)
Ek+q − Ek − h̄ω − i0

)
. (17)

For the case of a degenerate semiconductor this gives

ε′′L(�pl) ≈
e2kF

2εF

kBT

εF

1

x3
exp

{
− εF

kBT

[(
h̄�pl − εF x2

2εF x

)2

− 1

]}
wherex = q/kF . HereεF andkF are the Fermi energy and momentum, respectively. For
x = 0.35 andTe ≈ 20 K we obtainε′′L(�p) ≈ 1×10−3 and correspondinglyτLD ≈ 0.25 ns,
which is much longer than for other processes discussed so far. This is a consequence of the
fact that we are considering plasmon-like mode decay into electron–hole pairs for plasmons
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having small values of the parameterx. Therefore, in spite of the finite temperature, the
plasmon is well below the threshold for Landau damping, and the only allowed single-
particle interactions with small momentum transfer are in the exponential tail of the Fermi
distribution. However, this estimate is only an approximation as elastic scattering present
in the electron gas may significantly modify the form of the dielectric function.

(iii) In contrast with the above, coupled-mode decay into two electron–hole pairs, which
proceeds via higher-order perturbation processes in the ideal electron gas, is allowed by the
conservation laws even at zero temperature. This process is believed to be the major
mechanism for plasmon decay in metals, and in order to estimate its magnitude we borrow
directly the expression for the decay rate with a screened interaction [14]:

0pr−pr = 4

5π
�plN(�pl)x

2

(
�pl

2εF

)2

(18)

whereN(�pl) is the screening factor. Forx = 0.3 we can obtainτpr−pr > 5 ps. In order
to extend this result to describe plasmons in a heavily doped semiconductor, it is necessary
to add an extra term due to lattice polarizability to the total dielectric function, in addition
to the contribution from electron polarizability. The screening factorN(�pl) contains the
squared modulus of the total dielectric function in the denominator [14], and therefore we
would expect a reduction inN(�pl) and corresponding increase inτpr−pr , so that the value
of 5 ps is a lower limit. Elastic scattering in the electron gas is less important in this case
since the basic process is allowed even at absolute zero.

(iv) Finally we estimate the magnitude of the lifetime due to collisional damping in
the Fermi gas. The expression for the scattering rate of the coupled modes due to this
process may be written in the form01,coll = (�1/2)[ε′′c (q,�1)/ε

′′(q,�1)], whereε′′c (q,�1)

is the critical value of the imaginary part of the dielectric function for which the plasmon
ceases to exist, i.e. when the lifetime of the coupled mode is shorter than collision time
andε′′(q,�1) is the Lindhard–Mermin dielectric function. The value ofε′′c (q,�1) has been
calculated in [6], facilitating our estimate. A typical value of the mobility in GaAs in
the range of carrier concentrations around 1018 cm−3 is (2–3)× 103 cm2 V−1 s−1 which
gives the transport relaxation time in the rangeτtr ≈ 0.1–0.15 ps. It can be shown from
the Lindhard–Mermin dielectric function that the coupled-mode lifetime with respect to
collisional damping isτcoll > τtr so thatτcoll > 0.1–0.15 ps. This estimate agrees well with
the experimental value derived from the measurements of the Stokes linewidth in Raman
spectra [3, 4]. This is not surprising since in the Raman scattering geometry the transferred
momentum is fixed, and therefore the linewidth should reflect the uncertainty in plasmon
momentum [2].

Summarizing the results of our numerical estimates we arrive at the following hierarchy
of the plasmon–phonon lifetimes:

τcoll � τ � min{τLD, τL, τpr−pr}. (19)

6. Discussion of the experimental evidence

Even with allowance for the appreciable uncertainty attached to some of the values used,
our calculations suggest clearly that the dominant mechanism for coupled-mode energy loss
at low temperatures is direct excitation of lattice vibrations, and not electronic processes.
The decay rate for phonon emission is at least an order of magnitude larger than that
due to lattice viscosity or the creation of electron–hole pairs. To our knowledge the only
experimental data relating to this situation are Raman linewidth measurements, widely used
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for many years [2], and our own direct observations using phonon pulse techniques of the
coupled-mode decay products [5]. However, the Raman linewidths reflect the uncertainty
in a single component of the quasi-momentum of the coupled mode, which includes both
elastic and inelastic processes. Ramsteineret al [3] found that their measured linewidths
correlated with the mobility of the sample, which was dominated by the elastic collisions
with impurities. As we saw earlier, collision damping is several times faster than energy
loss by phonon excitation. However, it does not give rise to coupled-mode decay, only
to randomization of momentum. Hence the Raman experiments do not give information
directly on energy loss processes for coupled modes. Similarly, transport measurements
on an electron gas invariably yield the elastic scattering time and not the time for inelastic
energy loss.

In contrast, the phonon pulse experiments give information relating directly to the energy
loss mechanism and indeed are insensitive to elastic scattering. Details of the technique
can be found in [5]. The coupled modes were excited in the collector region of a DBRTS,
consisting of GaAs doped nominally with silicon(2× 1018 cm−3). Tunnelling electrons
could be injected into the collector with various energies, and the resulting acoustic phonons
detected via an array of superconducting aluminium bolometers on the opposite polished face
of the wafer. The DBRTS devices and bolometers were 65µm in size and the pulses 10 ns
long so that high temporal and spatial resolution could be achieved, and LA and transverse
acoustic (TA) polarizations resolved in any direction. By observing the dependence of the
detected phonon flux for different phonon polarizations as a function of electron energy it
was possible to identify the mechanisms of energy loss and to arrive at the conclusion that
coupled modes decayed predominantly via lattice excitations, as will now be explained.

Figure 1 shows the relevant data, which have been normalized to the tunnelling current,
so that the displayed quantity is the phonon flux per electron. The results for two samples
with different doping densities and hence carrier concentrations are shown, but the basic
features described below have been confirmed for many DBRTS devices. It is seen that
the TA mode has an approximately linear dependence on electron energy, whilst the LA
mode is essentially independent of electron energy. The results can be understood by the
following model of electron energy loss, summarized in figure 2. An injected electron
initially loses energy by emitting a cascade of coupled modes, plasmon like at 50 meV and
phonon like at 30 meV [12], until the energy has fallen to a level below the threshold for
the phonon-like mode. This process is an order of magnitude stronger than single-particle
electron–electron scattering. The coupled modes decay into high-frequency phonons which
subsequently suffer anharmonic down-conversion resulting in TA ballistic phonons [13],
so that the TA flux per electron at the bolometer scales with initial electron energy, less
30 meV. Fine structure on the TA mode variation confirmed the cascade mechanism and
also gave the values of the coupled-mode energies. It should be noted that the observation of
structure relating to the energies of the coupled modes also confirmed that the coupled modes
did not thermalize amongst themselves but decayed spontaneously before any thermalizing
collisions could take place. It is easy to confirm by a simple calculation that this result is
reasonable. From the bias voltage (300 mV), current density (5 mA) and collector volume
(65 µm × 65 µm × 0.5 µm) an average separation of 0.1 µm between coupled modes
could be inferred, which is an order of magnitude larger than the distance travelled in the
coupled-mode lifetime, 1 ps.

Below 30 meV, electrons can lose further energy only through single-particle collisions,
with the resultant heating of the Fermi gas. Thus, as the bias voltage is varied, the relative
amounts of energy lost into the two channels, coupled-mode emission and single-particle
excitation, fluctuate but with a maximum of 30 meV available for heating the Fermi gas,
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Figure 1. Dependence of the ballistic phonon fluxes measured at the bolometer as a function of
initial electron energy for two different carrier concentrations: (a) TA phonons; (b) LA phonons
for a carrier concentration pf 2× 1018 cm−3; (c) TA phonons; (d) LA phonons for a carrier
concentration of 1×1018 cm−3. The data are normalized to the tunnelling current, and hence to
the number of electrons participating in the energy loss process. The LA and TA phonons can
be distinguished through their different arrival times. Note the different relative magnitudes for
the different plasma energies.

regardless of the incident energy. We were able to calculate the temperature to which the
Fermi gas was heated by this process using the expression for the power input P per electron:

P =
∞∑
m=1

{
0.256

m5
T 5

e γ

[
5; 25.7m

Te

]
+ 0.072

m3
T 3

e γ

[
3; 25.7m

Te

]}
eV s−1. (20)

Hereγ (n;α) is an incomplete gamma function. We derived this formula having transformed
the expressions given by Kogan [15] into series expansions based on the solution for the
degenerate limit. At the resonant tunnelling peak,P = 4.5 × 105 eV s−1, yielding a
maximum value forTe of 22 K.

At this temperature the Fermi gas is well below the threshold for optical phonon
emission, and loses energy by radiating acoustic phonons, predominantly longitudinal, via
deformation potential and piezoelectric coupling. We can therefore regard the detected LA
phonon flux per electron as a direct indicator of that component of the original electron
energy that is dissipated by single-particle processes, since these alone result in heating
of the Fermi gas. The fact that it is independent of the injected electron energy confirms
that only the residual 30 meV, below the excitation threshold for the phonon-like mode,
gave rise to heating of the Fermi gas. Thus we can infer that the majority of the incident
energy, which went into coupled-mode excitation, did not finish up in the Fermi gas but as
down-converted TA phonons. Hence we conclude that the coupled modes decay by lattice,
and not by electronic excitations.
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Figure 2. Summary of the energy conversion processes, from the initial kinetic energy of the
tunnelling electron, to the final LA and TA phonons arriving at the bolometer.

7. Conclusions

Our results, both theoretical and experimental, have shown that energy loss by plasmon–
phonon coupled modes occurs predominantly via emission of phonons, and not through
electronic excitations. Furthermore, we found that decay takes place on a significantly
longer time scale than that of collision damping. However, the latter process is elastic so
that, although the momenta of the individual electrons are changed by scattering, the overall
phase coherence between electron wavefunctions is maintained. Thus the correlated motion
that constitutes plasmon behaviour is unaffected by collision damping.
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